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Summary. The observation of peaking in power spectra of K current noise in squid 
axon (Fishman, H.M., Moore, L.E., Poussart, D.J.M. 1975, J. Membrane Biol. 24:305) led 
to the calculation of a low frequency K conduction feature in the impedance (admittance) 
which was confirmed (Fishman, H.M., Poussart, D.J.M., Moore, L.E. & Siebenga, E., 
1977, J. Membrane Biol. 32:255). This paper analyzes two physical phenomena, one 
within and the other outside of the excitable membrane, that might account for the low 
frequency impedance (admittance) feature. The accumulation of potassium ions in a 
space outside the axon in conjunction with diffusion through the Schwann cell layer 
produces a low-frequency mode that is similar in some respects to that observed 
experimentally. Alternatively, a hypothetical inactivation process, with a voltage-de- 
pendent time constant, associated with conduction in potassium channels gives a better 
account of the data. Either or both of these phenomena could be involved in producing 
the low-frequency impedance behavior in the squid axon. 

A new low-frequency (1-30Hz) feature in the complex impedance of 
squid axon was measured recently (see Fig. 1). This feature is of signifi- 
cance to a description of potassium ion conduction in an axon because it 
was shown to be dependent only upon the state of K conduction, and it 
cannot be obtained from the linearized Hodgkin-Huxley equations by 
adjustment of parameters (Fishman et al., 1977b; Poussart, Moore & 
Fishman, 1977). The low-frequency mode is indicative of a rate process 
that is more complicated than the single first-order process contained in 
the HH formulation. Furthermore, this impedance feature provides a 
plausible link to the observation of sharp corners (peaking) in power 
density spectra of K § current noise (Fishman et al., 1975, 1977a, b) from 
which it was suggested that K conduction kinetics are not first order. 
However, with respect to models of K conduction, Fishman et al. (1977b) 
state that it is important to distinguish (i) the overall K conduction 
process in an axon, which includes phenomena arising from structures 
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Fig. I. Representative complex impedance (magnitude and phase) data of squid axon at 
potentials about rest (R). The low frequency (1 30 Hz) behavior ('~ ~ in IZl and negative 
05) is not contained in the linearized Hodgkin-Huxley equations and is the focus of this 
paper. An important feature with respect to suitability of applicable models is that the 
intermediate frequency of zero-phase crossing moves to the left with depolarization from 

- 6 7  mV. (From Fishman et al., 1977b). Membrane area approximately 0.2 cmz 

surrounding the axon, from (ii) phenomena that occur exclusively in the 
excitable membrane. It is to this problem that this communication is 
directed. 

The complex admittance of two classes of phenomena are calculated 
and compared with the previously reported impedance (admittance) data. 
The first phenomenon involves an extra-membrane process generally 
known as diffusion polarization (Neumcke, 1971) in which the K con- 
centration outside of the excitable membrane changes during current 
flow as a consequence of an external diffusion barrier. DeGoede et al. 

(1977) have calculated recently that K accumulation could account for 
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peaking in power spectra of K conduction fluctuations. The second 
process considered is the effect of a hypothetical inactivation of mem- 
brane K channels. K accumulation in conjunction with diffusion through 
the Schwann cell layer (SCL) produces a low-frequency feature that is 
similar in some respects to the measured impedance. Alternatively, a 
hypothetical inactivation process can account for all aspects of the 
measured impedance function. Nevertheless, both of these phenomena 
could be involved to some extent. 

Symbols and Abbreviations 

AF 
APS 
PPS 
H H  
F H  
GS 
AX 
H1 
H2 
SCL 
0 
K~, K ~  

= Adelman & FitzHugh, 1975. 
= Adelman, Palti & Senft, 1973. 
= phenomenological  periaxonal space of APS. 
=I-Iodgkin & Huxley, 1952. 
= Frankenhaeuser & Hodgkin, 1956. 
= Geren-Schmitt  space. 
= axolemma. 
= first hypothesis of FH. 
= second hypothesis of FH.  
= Schwann cell layer. 
= PPS thickness, in A. 
=potass ium (K +) concentrations, in axoplasm and near inner surface of the SCL, 

in mM. 
K~s, Ks, =s teady  state (under given conditions) and instantaneous K + concentrations in 

PPS, in mM. 
K s = K ~ , - K s s  , or excess K + concentration in PPS, in raM. 
P~ =permeabi l i ty  to K + through diffusion barrier between PPS and external bulk 

solution in cm.  sec- 1. 
M = efflux of K + through excitable membrane, in retool,  c m -  2. sec- 1. 
t = time, in msec. 
to = time at end of falling phase of a single action potential (AP) beginning at t =0.  
x = spatial variable used in one-dimensional diffusion, in cm. 
p = the Laplace transform variable, complex. 
1 = diffusion path length in several of the diffusion models, in cm. 
K(x, t) = a general potassium concentration exterior to AX. 
z =characteris t ic  time in the first hypothesized model  of FH,  H1, in sec. 
D =diffusion coefficient of SCL, in cm 2 sec-1. 
M K, M = K § flux into the PPS through the excitable membrane,  and outward through 

the external barrier (including SCL) in mmol .  c m - 2 .  sec-1. 
F = Faraday, 96,486.7 C/mole. 
I N = excitable membrane current including all ions, in IxA. c m -  2, positive outward. 

lya, IK, IL=ionic current densities, L denoting the Hodgkin-Huxley (HH) leakage, in 
gA.  c m -  2. 

t K = transport number for K + through SCL and/or external barrier. 
gN~,gK,g~ = conductances of respective ionic current components,  in mS.  c m - 2  
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m, h, n = HH parameters, dimensionless, between 0 and 1. 
i =hypothesized potassium inactivation parameter, dimensionless. 
VN,, I/K, V L = reversal potentials for respective ionic currents, inV. 
gM 
vb 
~t 

Rs 

=to ta l  membrane conductance, mS. cm -2. 
=potential  difference across excitable membrane, inside minus outside, in inV, 
=potential  of axoplasm relative to 0 reference as external bathing solution 

or extracellular fluid, in inV. 
= phenomenological proportionality constant between FAKse and I M. 
= specific resistance in series with HH pathways, in ohm. cm 2. 

Note: For dimensional consistency in numerical evaluations of Eqs. (1) and (10) in this 
paper, and Eq. (12) of Adelman and FitzHugh (1975), some of the above dimensioned 
physical quantities must have factors applied as follows: 

Computational 0=  10 -2 x 0 
Computational P~ ~ 1000 P~ 
Computational M = 106 x M 
Computational F = 10- 3 x F 

(units of 100~) 
(units of 10- 3 cm- sec- 1) 
(units of 10- 6 mmole, cm- 2. sec- 2) 
(units of 103 C. mole-  1) 

All other quantities are entered into equations in the units specified in the list of symbols. 

Possible Models for the Low Frequency Feature 

Potass ium Accumula t ion  

Definite improvements in the descriptions of action potentials in 
squid axon have been attained (e.g., Frankenhaeuser & Hodgkin, 1956, 
hereafter FH; Adelman, Palti & Senft, (APS), 1973; Adelman & 
FitzHugh, (AF), 1975) by incorporating effects of potassium accumulation 
in the periaxonal space into the Hodgkin-Huxley model (HH). Therefore, 
it would seem reasonable that some contribution might be noticeable 
with small signals. It appears that this effect can explain a part of the 
observed low frequency small signal behavior. Several variations have 
been proposed and are discussed subsequently. 

H1 : According to the first hypothesis put forward by FH, there exists 
a finite aqueous cylindrical space ("periaxonal space"), with thickness 0 
surrounding the axon membrane, bounded by a concentric and very thin 
outer barrier to diffusion. Potassium ion concentration in excess of the 
steady-state concentration, Ks, is assumed to be uniform throughout the 
space. Outward flow through the barrier is taken to be small in compari- 
son with outward potassium current through the excitable membrane 
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into the phenomenological space during the falling phase of an action 
potential (denoted AP). With PK as the permeability of the outer barrier 
to potassium ions and M as the potassium through the excitable mem- 
brane, 

_dKs =(M- Ks)/O. (13 
s dt 

H 2 :  In the second hypothesis of FH, there exists a finite diffusion 
barrier between the excitable membrane and the external bulk solution, 
but no aqueous space. The exterior of the membrane is assumed to be in 
direct contact (0=0) with a uniform layer of thickness l, with diffusion 
coefficient D 2. For solutions to this problem, see FH and Crank (1975). 

Difficulties with strict adherence to either hypothesis are discussed by 
FH, who favor H1. It is mentioned (FH) that all evidence at that time 
probably could have been explained by a combination of H1 and H2, 
with 50<0_<100A. H1 is then more in agreement with electron micro- 
graphic examinations of the periaxonal space (Villegas & Villegas, 1960; 
Geren & Schmitt, 1954). The major difficulty with H2 is that it predicts a 
substantial K accumulation during an action potential such that E~: 
would be reduced significantly. This is contrary to the observed after- 
potential behavior. 

A P S :  A more recent potassium accumulation model has been devel- 
oped by Adelman, Palti, Senft and FitzHugh (Adelman & Palti, 1969 a, b; 
Adelman et al., 1973; Adelman & FitzHugh, 1975), including a phenom- 
enological periaxonal space (PPS), possibly corresponding to "Geren- 
Schmitt space," the SCL and the external solution. Their system equation 
is the same as Eq. (1), with the identification of 

M = M I , : - M  e 

as net flux into the PPS, where 

(2) 

and 
M K = I K / F  (3) 

M~ = t K I u / F .  (4) 

Here, t K is the transport number for K +, 
current, F is the Faraday, and 

I M is the total membrane 

= g (V. - vK) (5) 
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is the potassium-ion current, with 
gK = gK n4 (6) 

and 

= [~.(V) (1 - n) - / U V )  n] T: (7) 
a n d  

ry=Qlo(r-6.3)/10. 

In the APS model, ~ and/~, are altered somewhat from the function- 
al form of HH, providing a higher value of gK mainly to account for 
experimental results (e.g., Fig. 8, Adelman et al., 1973). 

Modified APS:  In contrast with APS, the present computations will 
utilize all original HH functions for %, /?m, %,/~h, ~, and •,. However, 
other HH parameters have been changed as noted in figure captions in 
accordance with the description of K conduction obtained by fits of low 
frequency impedance data by Fishman et al. (1977b). A second modifi- 
cation will involve the inclusion of K + transport via I M through the 
SCL; with distinct transport numbers 

tKom ~ - -  Kse 
tK =__ Ks e + Nase + Clse if I~  > 0 

_ K o  (8) 
tK~ = Ko + Na ~ + C1 ~ if I u  < 0 

depending on whether I M is inward or outward. Here, Kse is the 
instantaneous, average K + concentration in the PPS. Figure2 diagrams 
the situation. 

i 

APS 

/>x 

MODIFIED APS 

Fig. 2. Schematic comparison of the potassium accumulation models. The spatial variable 
x is positive to the right and outward current is to the left. See text for details 
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It may well turn out to be necessary for improved fits to modify ~ 
and ]?, if n indeed depends on external potassium concentration (Adel- 
man & Palti, 1969b). 

The K § component  of I M was included as a modification of APS, 
although it amounts to only a 1-2 % correction at rest, primarily to have 
more accuracy at low frequency and at hyperpolarizations for purposes 
of modelling. The inclusion of this small component,  tKout I M, (see Fig. 2), 
is also consistent with a return to the original HH functions % and ft,, 
since APS has the effect of increasing gK due to a change in driving force 
as a consequence of accumulated K + in the PPS. Part of the increase of 
gK, as consistent with experimental data, could be due to t K I M. External 
concentrations are nominally Ko =10mM, Nao=460mM, Clo=540mM , 
and Kse ranges from about 10.1 to 10.2mM for a few millivolts de- 
polarization. At rest tK=0.03, and thus varies about 1% during the 
recovery phase of an AP. This is in agreement with FH estimates that 
one AP raises Kse about 1.1 mM at 17.5 ~ 

Let Kss be the steady state K § concentration under maintained 
conditions and Ks, be the instantaneous concentration in the PPS. The 
potassium excess concentration is defined as 

K s = K s a -  Kss" (9) 

The APS equation for Ks, modified to include tKI M is then: 

Ks = (IK-- tKI~t-- FP~: K y ( F  0). (10) 

In addition to Eq. (7), the other HH system equations are 

rh-= [ % ( 1 - m ) - f i m m  ] T I (11) 

/~ = [-eh(1 - h) -f ih hi Tf (12) 

I M =  CM(/+gNa(V M -  VNa)"~gK(V M -- VK)- '~gL(V M -- VL) (13) 

gN~ = g'N, m3 h (14) 

gK=~K n~ (15) 

Equations (7) and (10)-(13) are the system equations for the modified 
potassium accumulation. 

Linearization of a Generalized Model 

With little increase of mathematical complexity, the potassium accu- 
mulation system can be considered as coupled to the SCL diffusive 
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system (Adam, 1973), the combined system linearized, and the AC small 
signal characteristics of either subsystem obtained as special, limiting 
cases. The general system will also provide for more convenient compari- 
son between FH, APS, AF and inactivation models. 

The linearization of Eq. (13) is: 

AI~= CM A f/M + g~A V~t + ~,~c[4n~ (V M - V~) A n - n ~  A V~] 
(16) 

+ ~N,(3m 2 hooAm+m~Ah)(V M -  VN,) 

_ -  3 - /,/4 go~--gN, rno~ ho~ +gK ~ +gL. 

The Nernst equation for K + reversal potential is 

which linearizes as 

V RT /Kss + Ks ~=-V in ~ K~ )' 

RT K s 
~ vK- r i~s / (18) 

Equations (7), (11) and (12) are already linear, but for consistency of 
notation these can also represent small fluctuations about steady-state 
values by subtracting right-hand sides evaluated under steady state: 

Arh= [AmA VM- Am/%,-] (19) 

Aft= [AhA VM- Ah/rh] " (20) 

Ah = [A.A V M-  An~%] (21) 

where, with prime denoting differentiation with respect to V M, 

Ah= [%(1 -ho~ ) --fib hoo] Tf; 

An = [c~;(1 -noo)-fl'.noo ] Tf; 

"C m = ( O~ m -~- flm) - 1  Z /  l ; 

72n--~-(O;n= fln) - 1  Z f  1 

The effects considered in this paper occur over a limited potential 
range (+10mV about rest potential). Thus phenomena produced by 
electro-kinetic volume flow through the SCL are negligible according to 
Adam (1973). The system equation for diffusion through the SCL, 
considered homogeneous, is 

c;K/Ot =- D c 32 K/c3x 2. (22) 



Models of Axon Impedance 9 

K(x,  t) is the potassium concentration in the SCL at a depth x referenced 
to x = 0  at the bulk solution interface (see Fig. 2). Equation (22) is 
coupled to the APS model at the inner surface of the SCL at x = l  via 
equating flux across this boundary: 

DESK/Sx]x= l= (/K --  tK I~ ) /F  - 0((  s. (23) 

A boundary condition at the outer surface of the SCL is 

K(0, t) = K~r (24) 

Ks~ is the instantaneous deviation from steady state of the potassium 
concentration near the inner surface of, and within the SCL. As might be 
expected, the change in Kse during accumulation, AKs~, turns out to be 
small, being on the order of 0.5 raM. Its effect was investigated using the 
phenomenological approximation 

A K s  e - K [ I M / F  ] (25) 

where ~ is a proportionality constant. Equation (25) represents a buildup 
of potassium due to a reflective barrier and follows from the Nernst 
relation. 

The Laplace 
denoted by 

transform of a function Af(t)  will be 

oO 

(}f(p) = ~ Af( t)  e -p'  dr. 
o 

defined and 

Operating on both sides of Eqs. (16) and (19)-(22) with the Laplace 
transform, we obtain 

6IM___(CMp+g~)(3VM+~,K 3 4no~(V~ - VK) 6n -- g,K n4 R T ( F  Kss )- ~ 8Ks 

+~N~(3 z 3 8h)(VM_VNa ) m~o h~ ~Sm + moo 

p = [ & .  u -  am/zm] 

p (~h = [ A  h (~V M - (~h/q2h] 

p (Sn = [A ,  g)V M - 6n/%] 

p 6 K = D ( d  2 6K /dx  2) 

the latter having boundary conditions 

(26) 

(27) 

(28) 

(29) 

(30) 

and 
6K(O,p)=6Ks~ 

[-8~K/~x]x= t =  (~/K --  tK cSIM)/(FD) - Op 6Ks/D. 

(31) 

(32) 
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The right-hand side of Eq. (32) will be denoted C in the following. A 
general solution of Eq. (30) is, 

where 

and 

Ae~X + Be't2 x 
6K= 

])2 ey21 --  ~1 e?'~l 

A ~ - O K ~ y e  -~'~- C 

B =- C - 3K~ 7 e ~ 

C =- [dgK/dx]~= ~. 

(33) 

Consequently, Eq. (33) becomes 

C sinh 7 x + 6K~ 7 cosh 7 ( l -  x) 
6 K = 7 cosh 71 (34) 

It will be assumed that K s does not deviate significantly from the 
linear, steady-state relationship (18); thus, 

V, R T  
K=~VK~ 6K,. (35) 

With the definitions of G, g,,, and gh in Fishman et al. (1977b), Eqs. (26)- 
(30) and (35) can now be combined and solved to obtain the membrane 
admittance (see Appendix I for the derivation of ~-K)" 

Yu=-,5IM/,SVu = Y~+ gL+ YK + YN~ (36) 

Y~ =p C M (37a) 

where 

and where 

3 h ~ 4  g"* + gh (37b) 
YNa = gNa tYI~176 1 + p ' C  m i - k p r  h 

- -  g K  rt~o -t- 4 (37c) 
l +p'c ,  l + p z  K 

+ e g ) -  1 (3Sa) 

A = [ ] 
gK _ p~.  (p~ + p M ) - I  gK n ~ + (z K _ v.) fl 

Dy 

P~: -= tanh(7 l) 

(38b) 
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R T  4 [ 1  D~7 ] 
PKM=F2Kssg'Kn~176 § tK 

+ Py) 
~c=F[SKsj6Iu] .  

Finally, with the addition of a series resistance element, R~, to account 
for experimental conditions, the total admittance becomes 

Ytot ~ YM/( 1 + Rs YM). (39) 

In the APS limit as D/1--,P~ (as D and I become proportionally small) 

g)K(1, p) -SK(O,  p) 
D [8 6K/Ox]~= ~= lim D - lim (Dfl) 6K(l, p) = P~( ~K S 

1-~0 l 1-,o (40) 

since 8K(0,p)=0, and Eq. (32) goes over to the Laplace transform of (10), 
with K(/) as K s. Further, in the specialization to the APS model, ~c = 0. 

Thus, 
1 
- t a n h  (7 l) ~ l 
7 

DK7 
--0. 

sinh(7 l) 

Consequently, PK ~ P~ 

--, R T  _ 4 
r- 2 sgi(noo(1-tO. 

From Eq. (37c), it can be seen that the original gn branch must be 
modified and an additional branch added to the original Hodgkin- 
Huxley equivalent circuit (see Fig. 3). The second term, with pole at 
-1/%, contributes an RL branch, which may be lumped together with 
the Hodgkin-Huxley potassium RL branch. This effectively increases gn 
to G. The third term, with pole at - 1/ZK, contributes an RL branch with 
negative element values if ~K > %. It can be shown that in an equivalent 
representation, the conductance gK (= gK n~) is in series with a parallel 
combination of capacitor and shunt resistor having values 

R'= --gKgK l(gK q- gK)- 1 >0  (41) 

C = - g~ z K ~ ~ > 0. (42) 
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gk 

1 
gK 

I (a) 
1 
gn 

Tn 
gn 

(b) 

.1 :~-n 
:w 

~K gn 

HH 

A PS , AF 

T K < T n  

IL 
I 

~R' --I 
I ,  

(c)  

_C 

1 i~- n APS,  AF 

Fig. 3. Electrical circuit description of axon small signal behavior of K conduction. (a): 
From the linearized Hodgkin-Huxley equations. (b): Inclusion of K accumulation in an 
extracellular space according to Adelman et  al. (1973) and Adelman and FitzHugh 
(1975). (c): Transformation of circuit in b to one having positive element values for 

~K > ~.. See  t e x t  for definition of parameters 

It is of interest to note that an alternative circuit representation for K 
accumulation has been obtained by de Goede el al .  (1977) that can also 

produce peaking in the power spectrum of fluctuations from the K 

system. 

Potassium Inactivation 

A possibility quite distinct from the extracellular hypotheses consid- 
ered so far is that either the long term potassium inactivation observed in 
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giant axon (Ehrenstein & Gilbert, 1966) produces pertinent effects at 
characteristic times much shorter than observed (of the order of minutes) 
or there exists a second inactivation mechanism with more rapid kinetics. 
A justification for considering a hypothetical K conductance inactivation 
with z ~-30 msec is based upon the following facts: 

In essentially all experimental studies of K conduction, a "droop" 
occurs in IK(t) for long duration step clamps. This droop has been 
considered a nuisance to the experimenter rather than something of 
phenomenological importance (Adam, 1973). In addition, at long times, 
polarization of electrodes and aberrations in guarded current measure- 
ments (Poussart et al., 1977) complicate the interpretation of data. 
Furthermore, most experiments have been done at relatively low tem- 

- - 1 0 0  

1 l I 

m s e c  

- 5 0  

I I 
- 3 0  - 2 0  - 10  0 10  2 0  

m V  ( R . R )  V m 

I I I I I 
- 3 0  - 2 0  - 10  0 10  2 0  

m V  Vm 

Fig. 4. Potassium inactivation model: ~(V) is the inactivation time constant and i is the 
inactivation parameter. Both of these are functions of potential as shown 
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peratures (3-6~ whereas the effects that are considered in this paper 
have been observed only at high temperature (16-18 ~ (Fishman et al., 
1977b). 

Thus, it is not possible, at present, to exclude a K conductance 
inactivation from consideration as an explanation for the droop in IK(t ) 
at long times or for the low frequency impedance behavior. 

A potassium inactivation could, at least qualitatively, explain the 
observed low frequency admittance over a limited V M interval. To 
demonstrate this, an HH-like expression for inactivation of a branch 
conductance will be considered 

g i  = r g K  foe Ho~ - -  f (43) 

Here an arbitrary exponent has been included, although it might be 
expected that r will not be very different from 1, as in the sodium 
inactivation. From Eq. (43), gi is seen to be negative for VM> V K if, and 
only if, the last factor is negative. The parameter i is taken to satisfy a 
differential equation like (12), hence under steady-state conditions: 

! 

~i - -  i~ (c~ I + B') - -  i' / z  - - r D - -  oo~ i" (44) 

By Eqs. (43) and (44) gi is significant only over the bounded interval 
where n ~ is non-negligible and, at the same time, i'~ is large negative (see 
Fig. 4, top). Figure 4 (bottom) shows the inactivation voltage-dependence 
finally chosen to fit the low-frequency impedance feature. This is not very 
much different from that of Ehrenstein and Gilbert (1966). 

Circuit Considerations 

A resistance, R~, was considered in series with each of the above 
models, and with various combinations. R s was usually varied around 7 
ohm. cm 2. One additional equation 

VM = Vtot - -  I M R s  ( 4 5 )  

is then required to relate V~ to the total potential difference, Vto t, 
between external bathing solution and axoplasm. 

A characteristic common to all the models is that the linearizations 
can be represented in terms of parallel branches effectively across the 
membrane element. Before discussing the detailed distinctions, therefore, 
some perspective can be gained by considering the possibilities abstractly 
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from the point of view of equivalent circuits. The classical HH model 
yields a circuit (Chandler, FitzHugh and Cole, 1962) consisting of a 
parallel combination of capacitance, chord conductance (g~o) and RL 
branches. The potassium RL branch forms a "parallel resonant" com- 
bination with the membrane capacitance. A parallel combination of 
resonant branches, containing two opposite susceptive elements all of a 
given type (i.e., parallel resonant or series resonant) will either show local 
minima, or local maxima, but not both. Thus, if membrane capacitance 
together with a single potassium RL branch is considered as a parallel 
resonant circuit which accounts for the observed impedance resonant 
peak in squid axon (with suppressed Na conduction), then the dip- 
producing phenomenon requires, in addition, either an RC or a series 
resonant branch. Consequently, all models that can possibly account for 
the low frequency mode (Fig. 1) must effectively introduce either an RC 
or a series resonant branch across the HH element. 

Computations and Comparisons 

Our criteria for fitting the data are the following: 

1) The preservation of a substantial resonance at rest and depolarized 
potentials. 

2) The correct voltage dependence of the zero crossings in the phase 
function. 

3) Agreement with both the magnitude and phase functions at 
frequencies below 30 Hz. 

We did not attempt to interpret these criteria quantitatively. One fit was 
considered better than another when there were unequivocal improve- 
ments in one or more of these criteria. 

From extensive computer calculations involving systematic variation 
of each parameter in the model, a number of difficulties in attempts to fit 
the APS model (using modified c~, and/~n as well as the HH functions) 
were encountered, whether the model was corrected for t ~ I  K or not. 
These are summarized as follows. First, within a few orders of magnitude 
of reasonable parameter values, a dip between 10 and 20Hz which 
appeared in the model (Fig. 5) did not recede satisfactorily as V~t was 
depolarized to between 10 and 20 mV, where there is no dip in the data. 
Second, the minimum of the dip would move from around 25 Hz at 
- 9  mV to well over 100 Hz at +9 mV, whereas the resonant peak would 
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(a) 

g'Na = 0mS/cm 2 g'K = 50 gL = 0.8 gS = 143 

VNa ---- 115mV VK = - 2 3  P~ = 3,41x10"4cm/sec 

K 0 = 10 mM Ki = 283 KS = 10.4 
T = 291 OK Qlo = 2 e = 379 

Fig. 5. Complex impedance with potential calculated from the APS (Adelman, Palti & 
Senft) model: (a) with modified values of HH parameters, (b) with modified values of HH 
parameters and an increase in 0 (379 ~ 1000 A) (the dip and resonance in jZr are more 
pronounced with potential variation), and (c) with significant changes in K0, gL, P~ and 
K~ from the values used in b to give a better approximation to the representative data in 
Fig. I. Original HH values give much worse fits of impedance data in all cases, c 
represents the best approximation to the data obtained by systematic variation (10-fold) 
of all parameters in the APS model. Potentials in this and subsequent figures are relative 

to rest (0 mV = - 60 mV absolute) 
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VNa = 1 1 5 m V  VK = "lS.S P~ = 3.41xlO'4cm/,,c 

K 0 = l O m M  K i  = 284 KS = 10.4 

T = 291~ Qlo = 2 e = 1000.~. 
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move from around 100 to 200 Hz. The first point is reminiscent of an 
earlier simulation (Fishman et al., 1977b) with an RC element in series 
with the HH membrane, although the magnitude of the dip in the APS 
model went away rather better with depolarization. The second obser- 
vation of a tendency for the dip to overtake the peak with depolarization 
appears also to have severe effects on the phase function, whereas the dip 
of a previous simulation moves much less and has a better phase fit 
(Fishman et al., 1977b). A third observation is that at 0=  1000~ there is 
an increased tendency for the dip to overtake the peak, disappearing by 
depressing the latter. In the data, dips tend to move to the left rather 
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(c) 

gNa = 0 rnS//cm 2 gK -- 50 gL -- 1.2 gs = 143 
VNa -- 115mV V K ----17 PK s " 2xlO'2cm/sec 
Ko = 2 mM Ki = 284 KS = 2 
T = 291~ Q l O =  2 E) = l o o o A  

than the right, for membrane  potentials increasing from - 70 to - 59 mV 
(Fig. 1). A related difficulty is the movement  of the low frequency zero- 
crossing in phase: in data  it moves to the left (Fig. 1), whereas in APS 
simulations it moves to the right with depolarization, when it exists at 
all, and the lowest zero-crossing (see - 6 1 m V ,  Fig. 1) for APS has not  
been found in the present simulations, for a wide range of parameter  
values. In general, 0 was found to be best at the APS nomina l  value of 
379A, but  gL had to be increased to 0.8 mS/cm 2. A representative tKI~ 
correction is shown in Fig. 5c as a dashed line near the corresponding 
solid curve. 

The potass ium inactivation model  could be adjusted to fit better, on 
the whole, than the APS model,  with an inactivation parameter  having 
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Fig. 6. Complex impedance with potential calculated from the potassium inactivation 
model (a) z i independent of potential, and (b) z~ dependent on potential as in Fig. 4. In a 
middle zero crossing with potential is still incorrect; however, in b it moves to the left 
with small depolarization from - 2  mV and the dip in IZJ disappears for extreme hyper- 

and depolarization as in the actual data (Fig. 1) 

vo l t age-dependence  as in Fig. 4 and with a voltage-dependent time-con- 
stant, also p lo t ted  in Fig. 4. Wi th  only the inact ivat ion pa ramete r  

vol tage-dependent ,  the predic ted  dip m o v e d  to the right with depolar i -  
zat ion (Fig. 6a) as with the models  cons idered  previous ly ;  but  with the 

t ime-cons tan t  "ci(V) decreasing with V, the magn i tude  could  be fit closely 
(Fig. 6b). Unfor tuna te ly ,  the phase  remained  at best  a qual i ta t ive  fit, but  
correct  at least as to the direct ion of  m o v e m e n t  of  the middle  zero- 
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crossing. The explanat ion seems to be clear: inactivation produces  an 
admit tance  branch which contributes essentially the feature of a first 
order  process (a Lorentz ian in terms of impedance  squared-magnitude).  
This impedance  "shoulder"  tends to rise with hyperpolarizat ion,  even- 
tually engulfing the constant  componen t  of the other potass ium terms 
consisting of a resonance peak. If it rises vertically, it produces a dip over 
a finite interval, but  one which moves to the right. If, on the other hand, 
the shoulder  moves to the left as it subsides with depolarization, then the 
dip (and the zero-crossing) moves to the left. Wi thout  the voltage de- 
pendence of r~, the inactivat ion model  suffers the same drawback as the 
A d a m  model  and APS:  the middle zero-crossing moves to the right. 

The fits of the combined  APS plus A d a m  potass ium accumula t ion  
model  [Eqs. (26)-(33)1 were improved (in part icular  at frequencies below 
10Hz) over those obta ined with APS alone by setting 1<=80 (Fig. 7). 
Over a small range ( -2 - - - ,5mV)  the high frequency zero crossing in 
phase moves to the left with depolarization. 
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Fig. 7. Complex impedance with potential calculated from modified APS and Adam 
model with a diffusion barrier located at the outer limit of the SCL 

Summary and Conclusions 

The two classes of models considered are: 

1) potassium accumulation in a phenomenological periaxonal space; 
(H1) (H2)(APS)(Adam) 

2) potassium conductance inactivation. 

These were tested in conjunction with a series resistance through the 
SCL. Over reasonable ranges of parameter values, the potassium accu- 
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mulation model tended to produce much larger dips and negative phase 
than the K conductance inactivation model and for depolarizations the 

dip did not disappear satisfactorily. Moreover,  the dip due to potassium 
accumulat ion moved to the right with depolarization, whereas a voltage- 
dependent  K inactivation rate constant could make the dip due to 

inactivation move to the left. Consequently, the phase form for in- 
activation was closer to data than for accumulation. However, when the 
accumulat ion was coupled to diffusion through the Schwann cell layer, 
significant improvements in the fit of admittance data were obtained. 

The best accumulat ion model suggests that, in addition to the accumu- 
lation and diffusion, there is a barrier to flow in the outer Schwann cell 
layer. However, at this point we do not have an explanation of this 
hypothetical barrier. We conclude that both 1 and 2 above can produce a 
low frequency mode in the complex impedance (admittance) of squid 

axon that is similar to that observed. 

We thank Dr. Richard FitzHugh for his comments on the manuscript and an 
equivalent circuit representation of the K accumulation model and Dr. H. Richard 
Leuchtag for carefully reading the manuscript. In addition, we are grateful to Dr. K.S. 
Cole for discussions. This work was supported in part by NIH grants NS 11764 and NS 
13778. 

Appendix I 

Derivat ion o f  the Potass ium Admit tance ,  f'K 

At the SCL-PPS interface (x=l) ,  K = K  s and, from Eq. (34), 

6K~ = ~ c~K~e + C v 
where 

/2 = (cosh ;2 l)- 1 

v = 7- 1 tanh 7 I. 

The Laplace transform of Eq. (25) gives 

(SKse = ~c F -  ~ 6I M. 

Then, Eq. (A1) becomes 

and 

~ K  =/2~  F - 1 6 I M  + C v 

(A1) 

C = F -  1 [6Ks _ # K F -  1 OIM]" (A2) 
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Returning to Eq. (32), 

[06K/OX]x= =C=(FD )- 1 [6IK__tK6IM ] __p OO- 1 ~K s 

consequently, 

v- 1 [bKs _ # tc F -  1 6 iu]  = (FD)- 1 [c]i  K _ tK b l M ]  _ p 0 D - 1 6Ks. 

Solving for 6K s, with 6I M =-61 K for simplicity, 

bKs = F -  1 [Dv-  1 +pO]- 1 blK( 1 + / / )  

where/~' = # ~c D v- 1 _ tK" 
F r o m  Eq. (26), the potass ium conduct ion 
obtained by setting gN, =gL = 0. Thus, 

[ 4 4gK n3Anzn(VM-  VK)] c~VM - 4 
~IK = gKtlm-~ l +p.cn - - g K n o ~ R T ( F K j  -1 ~K~. 

Substituting for 6K s f rom Eq. (A3) and collecting terms, 

- 4 

F2Kss ( D v - l + p )  I + P G  

Let PK=DV - 1 = D 7 ( t a n h 7  l)- 1 

- -  4 pKM=gKnoo RTEF 2 K~s] - 1 (1 +/~') 

- 4 R T [ F Z K s s ] - l [ l + D K T ( s i n h ? l ) _ l  tK ] ~--- gK/%o 

VK=--O[pM + PK]-I. 

Then 

(PK+p 

The above yields the admit tance 

P~ [~K n~ + - -  g~ - ~ v~ - P ~ + V ~  k 
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(A3) 

por t ion of the equat ion is 

g" ]~VM. 
1 + p ' c  n 

l g+~"p G. ] ( I + p O / PK ) 
(1 + p ~k) 

The effect of K accumula t ion  vanishes as l ~  0, for which 

and so 

PK 
PK-* ~,  P~ + PK ,1, z~ ~ O 

yK___~ y ~ H  

(A4) 
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In order to obtain f~K in the form of Eq. (37c) we expand (A4) into partial 
fractions. 

Let 

Eq. (A4) becomes 

P~ 
a=pM +~, then O/PK=VK/a. 

Let 

so that 

gn ) 1 + (p ZK/a ) 
g K = a  gKrt  4-}  l+p% l+pzk 

no~ + g. + j  co gK Hoo ~'K(J CO)= (gK 4 4 %)(a+j co ZK) 
(1 + j  co ~,) (1 + j  co rK) 

(A5) 

A B 
Y K - - -  4 - gK n o~ -~ t- (A6) 

1 + j  co z. 1 + j  co "cr 

(1 +j  co'c.)(1 + j  C0"CK) !?K =~K n~ (1 +j  C0"Cn)(1 + j  C0"CK) 
+A(1 +jc0 VK)+B(1 +jc0 %) 

- -  - -  4 -(gK noo + A  +B)  
4 B - d- +j  co [% (gK n oo + ) + ~CK (gK/~ oo -~- A)J 

4 
- -  092 gK nov Tn "OK" 

Therefore, from Eq. (A5), equating real and imaginary parts, we have 

4 + A + B = a ( g K n  ~ +g,) gK Hoe 

and 
~.(gKn ~ +B)+rK(~Kn 4+A)=(~Kn ~+g , ) . cK+a-  4 gK rt~ "c n . 

Solving the above equations for A and B yields 

If we let 

then 

A =g ,  [ 1 - ( 1 - a )  "c, T--nTK] 

B = (P~M/PK) a [gK 4 

~, =A,  ~K=B 

gn gK ?K - 4 

l + j c o z ,  I+jCOrK 

which is Eq. (37c). 



Models of Axon Impedance 

References 

25 

Adam, G. 1973. The effect of potassium diffusion through the Schwann cell layer on 
potassium conductance of the squid axon. J. Membrane Biol. 13:353 

Adelman, W.J., Jr., FitzHugh, R. 1975. Solutions of the Hodgkin-Huxley equations 
modified for potassium accumulation in a periaxonal space. Fed. Proc. 34:1322 

Adelman, W.J., Jr., Palti, Y. 1969a. The effects of external potassium and long duration 
voltage conditioning on the amplitude of sodium currents in the giant axon of the 
squid, Loligo pealei. J. Gen. Physiol. 53:685 

Adelman, W.J., Jr., Palti, Y. 1969b. The influence of external potassium on the in- 
activation of sodium currents in the giant axon of the squid, Loligo pealei. J. Gen. 
Physiol. 54:589 

Adelman, W.J., Jr., Palti, Y. 1972. Some relations between external cations and the 
inactivation of the initial transient conductance of the squid axon. In: Perspectives in 
Membrane Biophysics. D. P. Agin, editor, p. 101. Gordon & Breach, London 

Adelman, W.J., Jr., Palti, Y., Senft, J.P. 1972. The role of periaxonal and perineuronal 
spaces in modifying ionic flow across neural membranes, In: Current Topics in 
Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 3, p. 199. 
Academic Press, New York 

Adelman, W.J., Jr., Palti, Y., Senft, J.P. 1973. Potassium ion accumulation in a periaxonal 
space and its effect on the measurement of membrane potassium ion conductance. J. 
Membrane Biol. 13:387 

Chandler, W.K., FitzHugh, R., Cole, K.S. 1962. Theoretical stability properties of a 
space-clamped axon. Biophys. J. 2:105 

Crank, J. 1975. The Mathematics of Diffusion. Clarendon, Oxford 
Ehrenstein, G., Gilbert, D . L  1966. Slow changes of potassium permeability in the squid 

giant axon. Biophys. J. 6:553 
Fishman, H.M., Moore, L.E., Poussart, D.J.M. 1975. Potassium-ion conduction noise in 

squid axon membrane. J. Membrane Biol. 24:305 
Fishman, H.M., Moore, L.E., Poussart, D. 1977a. Ion movements and kinetics in squid 

axon. II. Spontaneous electrical fluctuations. Ann. N.Y. Acad. Sci. 303:399 
Fishman, H.M., Poussart, D.J.M., Moore, L.E., Siebenga, E. 1977b. K § conduction 

description from the low frequency impedance and admittance of squid axon. J. 
Membrane Biol. 32:255 

FitzHugh, R. 1969. Mathematical models of excitation and propagation in nerve. In: 
Biological Engineering. H. Schwan, editor, p. 1. McGraw-Hill, New York 

Frankenhaeuser, B., Hodgkin, A.L., 1956. The after-effects of impulses in the giant 
nerve fibres of Loligo. J. Physiol. (London) 131:341 

Geren, B.B., Schmitt, F.O. 1954. The structure of the Schwann cell and its relation to the 
axon in certain invertebrate nerve fibres. Proc. Nat. Acad. Sci. USA 40:863 

Goede, J. de, Vonk, M.W., Van den Berg, R.J., vanRijn, H., Verveen, A.A., 1977. Ann. 
N. Y. Acad. Sci. 303:389 

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and 
its application to conduction and excitation in nerve. J. Physiol. (London) 117:500 

Neumcke, B. 1971. Diffusion polarization at lipid bilayer membranes. Biophysik 7:95 
Poussart, D., Moore, L.E., Fishman, H.M. 1977. Ion movements and kinetics in squid 

axon. I. Complex admittance. Ann. N. Y. Acad. Sci. 303:355 
Villegas, R., Villegas, G.M. 1960. Characterization of the membranes in the giant nerve 

fibre of the squid. J. Gen. Physiol. 43:73 


